納米光催化氧化水處理技術(shù)進(jìn)展
現(xiàn)代科學(xué)研究發(fā)現(xiàn):當(dāng)物質(zhì)被“粉碎”到納米級(jí)并制成納米材料時(shí)將具有多種物理效應(yīng),不僅其光、電、熱、磁等特性發(fā)生變化,而且具有輻射、吸收、催化、殺菌、吸附等許多新特性。在眾多納米科學(xué)技術(shù)中,納米材料學(xué)、納米電子學(xué)和納米醫(yī)藥學(xué)是目前倍受重視的三個(gè)研究方面。有研究者指出,納米技術(shù)對(duì)水中粒徑為200nm污染物的去除能力是其他技術(shù)不可替代的[1],認(rèn)為納米技術(shù)可在污染修復(fù)、低成本脫鹽等領(lǐng)域發(fā)揮作用[2],直接向受污染沉積物或地下水中注入納米鐵可治理污染,其有可能替代常規(guī)的鐵墻技術(shù)[3、4]。 在水處理中,應(yīng)用最廣泛的納米催化材料應(yīng)是n型半導(dǎo)體納米材料。而在常規(guī)催化氧化法基礎(chǔ)上發(fā)展起來(lái)的以納米材料為催化劑的催化氧化水處理技術(shù)將具有更加獨(dú)特的功效。 1 納米光催化氧化水處理技術(shù) 1.1 機(jī)理 一般認(rèn)為,光催化活性是由催化劑的吸收光能力、電荷分離和向底物轉(zhuǎn)移的效率決定的。當(dāng)納米半導(dǎo)體粒子受到大于禁帶寬度能量的光子照射后,電子從價(jià)帶躍遷到 導(dǎo)帶而產(chǎn)生了電子—空穴對(duì)。電子具有還原性,空穴具有氧化性,從而促進(jìn)了有機(jī)物的合成或使有機(jī)物降解。納米半導(dǎo)體材料的特性和催化效果各有不同,但作為光催化劑它們的催化活性與相應(yīng)的體相材料相比有顯著提高,其原理在于:①通過(guò)量子尺寸限域造成吸收邊的藍(lán)移;②由散射的能級(jí)和躍遷選律造成光譜吸收和發(fā)射行為結(jié)構(gòu)比;③與體相材料相比,量子阱中的熱載流子冷卻速度下降,量子效率提高;④納米半導(dǎo)體粒子所具有的量子尺寸效應(yīng)使其導(dǎo)帶和價(jià)帶能級(jí)變成分立的能級(jí),能隙變寬,導(dǎo)帶電位變得更負(fù),而價(jià)帶電位變得更正,這意味著納米半導(dǎo)體粒子獲得了更強(qiáng)的還原及氧化能力,從而催化活性隨尺寸量子化程度的 提高而提高[5]。除此以外,還在于納米半導(dǎo)體粒子的粒徑和吸收特性。 納米半導(dǎo)體粒子的粒徑通常小于空間電荷層的厚度。在此情況下,空間電荷層的任
相關(guān)信息 







推薦企業(yè)
推薦企業(yè)
推薦企業(yè)